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7.1 Ocean capacity and ecosystem services

The oceans provide us with ecosystem services such as food provision from fisheries and

aquaculture, carbon sequestration, flood control and waste detoxification for people living

in coastal communities, and biodiversity provision [1]. These services play a direct role in

the composition of the Earth’s atmosphere that regulates our weather and climate [2]. The

capacity of the oceans to provide these ecosystem services can change over time due to

human activities such as fishing, emission of greenhouse gases, pollution, and coastal

development [3]. We can measure components of nature to quantify the capacity of the

ocean to provide ecosystem services and how capacity changes with time. One component

of ocean capacity is the extent and quality of habitats such as coral reefs, mangroves, sea

grasses, and kelp forests, which are directly related to the abundance and biomass of species

and biodiversity associated with each habitat [4]. Habitats, biomass, and biodiversity

respond to human activities such as fishing, habitat destruction, pollution, and

sedimentation as well as to environmental conditions that are affected by climate change

such as temperature, nutrient flux, pH, and oxygen levels of the oceans. By tracking these
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key aspects of ocean capacity through time, we can understand how ecosystem services

respond to human activities and climate change.

7.2 Climate change impacts on ocean capacity

Humans have been impacting the oceans for millennia through fishing, which has reduced

the abundance and biomass of many different species worldwide, in turn affecting the

structure and function of marine food webs and ecosystems [5,6]. These activities have

altered the capacity of the oceans to provide ecosystem services such as food provision.

More recently, since the mid-1800s and the industrial revolution, the emission of

greenhouse gases has played a transformative role in the Earth’s biogeochemical cycle and

climate. These effects are already observed in coastal communities, as fishers have noticed

traditionally fished species are absent and new species arriving to their waters or that they

have to travel farther to fish species than they used to [7,8]. Reducing greenhouse gas

emissions has been addressed by policies, technologies, local and regional initiatives, and

international agreements such as the Paris Agreement. However, it remains unclear at what

rate greenhouse gases will be emitted in the future, and for that reason scientists have been

working with a range of greenhouse gas scenarios to make projections about what we might

expect for the future capacity of the oceans to provide ecosystem services. Projections

about how the oceans, marine biodiversity, marine aquaculture, and fisheries will respond to

climate change are used by policy makers, businesses, natural resource producers and users,

and insurance companies to plan for future environmental and ecological conditions.

The Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report

summarizes the state of the art scientific research addressing how climate change is

projected to impact the oceans [3]. This report presented an approach to project how catch

potential—the amount of fish in the ocean available to be caught—is expected to change in

the future. This analysis relied on a modeling approach developed by Cheung et al. [9],

referred to as the Dynamic Bioclimate Envelope Model (DBEM). As with every model, this

model is based on assumptions and simplifications of how the world works, and is subject

to various uncertainties, biases, limitations, and sensitivities [10]. As a result, projections

about the future ocean capacity made by this model may differ from projections made by

other models. DBEM is based on a species distribution approach, whereby if environmental

conditions for a particular species are favorable, the model will predict that it will occur

there. This model does not take into account species interactions, but some models such as

EcoOcean [11], a global extension of the popular and foundational Ecopath with Ecosim

regional model [12], specify species interactions via predator!prey relationships. At the

other end of the spectrum of model architecture are size-based models which do not resolve

species or functional groups, but instead focus on size classes of marine life [13,14].
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Generally, DBEM and size-based models project greater overall declines in global fish

biomass under climate change when compared to EcoOcean [15].

Acknowledging the need to improve our understanding of uncertainties in projections of

climate change impacts on the world’s oceans, a research group composed of fisheries and

ecosystem modelers at both regional and global scales as well as members from the climate

and Earth system modeling community was created to address this question. The Fisheries

and Marine Ecosystem Model Intercomparison Project (FishMIP) was formed in 2013 to

bring together a wide array of modeling approaches and compare them in a meaningful way

in order to understand how models project climate change impacts and quantify associated

uncertainties, biases, limitations, and sensitivities for model projections of future ocean

capacity. The founding coordinators were Heike Lotze, Derek Tittensor, Eric Galbraith,

William Cheung, and myself. FishMIP maintains a membership that is open to all who wish

to participate, and at present includes more than 50 members.

7.3 The model intercomparison project experience: model ensembles

The Model Intercomparison Project (MIP) approach of using an ensemble of models to run

standardized simulations has been applied to many different sectors and fields. An ensemble

of models is a group of models that are all capable of making projections about the same

thing—such as future land surface temperature or sea surface temperature—but may be

built differently. The rationale for using an ensemble of models forced with the same data

is because, as above, each model has its own structure, assumptions, uncertainties, biases,

limitations, and sensitivities. Most models give different answers when asked the same

question, and learning why is important to improve and refine our understanding of how we

model systems. Using an ensemble of models accounts for a greater envelope of variability

or level of agreement in model projections. Under the IPCC framework to evaluate

evidence, the two quantitative criteria that are applied are: the amount of evidence and

evidence agreement [3]. To allow for meaningful comparisons among models, it is

necessary to standardize how simulations are run as much as possible, thereby elucidating

differences that are due to the models themselves. Once a general understanding of

ensemble variability under different scenarios has been achieved, whether all models predict

the same direction of change (increase or decrease), and how different the magnitude of

change varies, a more detailed and controlled experimental design of simulations and

analyses of factors contributing to the envelope of variability can be undertaken. For these

reasons, the MIP approach has been taken up by many modeling communities worldwide.

The Ocean MIP “aims to provide a framework for evaluating, understanding, and

improving the ocean, sea ice, tracer, and biogeochemical components of global climate and

Earth system models” contributing to the Coupled MIP (CMIP) which also represents

terrestrial processes. The fifth iteration of CMIP (CMIP5) was used widely in the IPCC 5th
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Assessment Report to detail future projections about land and sea temperatures, primary

productivity, precipitation, winds and storms, ocean circulation, salinity, acidity, and

oxygen concentration under different carbon emissions scenarios [3]. The Inter-Sectoral

Impact MIP (ISIMIP) was formed to interface with CMIP in a downstream manner using

CMIP outputs as ISIMIP inputs. Outputs from the CMIP ensemble describing projections

for physical and environmental variables under climate change scenarios are used as inputs

for impact MIPs from different sectors such as agriculture, biomes, coastal infrastructure,

energy, forests, water, human health, lakes, permafrost, terrestrial biodiversity, and fisheries

and marine ecosystems (Fig. 7.1; [16]). The aim of ISIMIP is not only to standardize

climate change simulations among models within sectors but also to standardize simulations

among sectors to allow for a broader comparison of climate change impacts [17,18]. In this

standardization of simulations lies the challenge of using a MIP approach; by including a

wide variety of model structures, and their required inputs, and outputs, compromises have

to be made by some models in order to have a lowest common denominator that is

inclusive of all models.

7.4 Fisheries and Marine Ecosystem Model Intercomparison Project:
projecting future ocean capacity

FishMIP was conceived in response to a question posed by researchers working in the

agricultural climate change community about whether the oceans could potentially make up

for food losses that were projected to happen on land under climate change. After four

years of FishMIP, we were able to answer this question by comparing FishMIP fish

projections to crop projections from the Agricultural MIP (AgMIP) under climate change.

Unfortunately, countries in the tropics that are projected to experience the biggest losses in

agricultural production on land are also projected to have the largest losses in fisheries

catch production in the ocean [13,14].

Figure 7.1
Methodological approach of the FishMIP to make projections about future ocean capacity.

FishMIP, Fisheries and Marine Ecosystems Model Intercomparison Project.
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The process of developing a simulation protocol for FishMIP that could be applied by a

diverse set of fisheries and marine ecosystem models took many years, workshops, emails,

and conference calls and was largely a consensus process among modelers who were

interested in the project (https://www.isimip.org/gettingstarted/marine-ecosystems-fisheries/).

Models ranged greatly in their data requirements (Table 7.1) and resolution of marine

organisms, from size-based modeling approaches such asthe BiOeconomic mArine Trophic

Size-spectrum (BOATS) model that resolves all fish in the oceans into three size categories

[19] to the DBEM which resolves more than 1000 different species [9]. As a result of this

heterogeneity, FishMIP outputs from all models have been disaggregated into three size

categories [16,20!22]. An additional level of complexity of FishMIP was that models of

both global scale and regional scale were included. While it would have been more

straightforward to only include models of global scale, we wanted to be able to address how

projections by global models based on first principles and driven by bottom-up processes

for individual regions compared to corresponding regional models that were parameterized

with local biomass survey and fisheries data and driven by top-down processes such as

Table 7.1: Description of common model inputs and outputs employed by Fisheries and Marine
Ecosystem Model Intercomparison Project (FishMIP) model ensemble, as well as the

standardized model outputs provided by all models participating in FishMIP.

Common model inputs Units

Ocean current speed m/s
Sea temperature or potential temperature K
Dissolved O2 concentration mol/m3

Primary organic carbon productivity mol/m3/s
Zooplankton carbon concentration mol/m3

pH Unitless
Salinity psu

Common model outputs

Fish species and functional group carbon biomass density g/m3/month
Fisheries metrics Various
Relative species and functional group abundances Unitless
Trophic level Unitless
Production of carbon g/m3/month
Production and biomass ratio Unitless
Mortality rate month21

FishMIP standardized outputs

Total system carbon biomass g/m2

Total consumer carbon biomass density g/m2

Carbon biomass density of consumers. 10 cm g/m2

Carbon biomass density of consumers. 30 cm g/m2

Total catch (all commercial functional groups or size classes) g wet biomass/m2

Total landings (all commercial functional groups or size classes) g wet biomass/m2
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fishing. Additionally, we included different socioeconomic scenarios, often referred to as

shared socioeconomic pathways (SSPs) of future fishing pressure, not to try to predict the

future, but to provide an exploratory approach to a range of possible ocean futures (Fig. 7.1).

During each iteration of the FishMIP process, we learned more and more about other

models in the project, the model(s) that we work with and develop directly, and why they

give different answers. Initial results indicate that global mean fisheries productivity is

projected to decrease under climate change, with greater declines under higher carbon

emissions scenarios [15,22]. There is however, a lot of spatial variation in projected

changes, and there is less agreement among regional and global models for specific regions

compared to agreement among global models. We are now in a position to run controlled

experiments of changes in the two primary climate drivers—sea surface temperature and

primary productivity—to pinpoint the mechanisms in each model that lead to variability in

projections. For example, in the AgMIP, the main factor leading to differences in

projections of crop production under climate change was if models included CO2

fertilization or not (increased crop production due to increased CO2 in the atmosphere under

climate change; [23]). These comparison exercises lead to a better understanding of how

different representations of models respond to climate change drivers, to further refine

projections of future ocean capacity.

7.5 Socioeconomic drivers of future ocean capacity

It has been shown in a number ofinstances that while climate change may reduce future

fisheries productivity in some regions, the most important factors to consider when

projecting future fish biomass are socioeconomic in nature. For example, a recent study that

used satellite tracks from vessels and machine learning algorithms to differentiate fishing

behavior from transit behavior quantified the global footprint of fishing effort!and found

that the largest reduction in fishing effort annually occurred during the holidays of Chinese

New Year [24]. A fishery that is aiming to fish at maximum sustainable yield typically

reduces the biomass of the stock by about half. While some species may be more

susceptible to climate change impacts than others, typically the projected changes in

biomass due to climate are much less severe when compared to potential changes due to

fishing activities!even for sustainable fisheries reference points. Therefore any projections

of climate change impacts on fisheries need to take into account how fishing effort will

change in the future.

While there have been some efforts to qualitatively map out future exploratory ocean

scenarios related to the SSPs [25,26], at present there is a lack of the types of

socioeconomic scenarios that can be run with FishMIP models. For these reasons, FishMIP

used two different fishing scenarios in combination with different climate emissions

scenarios: hold fishing constant at 2005 levels to be consistent with ISIMIP protocols (and
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due to data availability) and a no-fishing scenario. While highly unrealistic, the no-fishing

scenario is a control run that allows for an analysis of how much climate change affects

future ocean capacity in the absence of fishing. In future iterations of FishMIP we aim to be

able to incorporate more detailed socioeconomic scenarios. The goal of these exploratory

scenarios is not to predict the future, but to try to encompass the extremes in terms of the

range of how fishing effort might change to understand the range of future ocean capacity

under different socioeconomic and climate scenarios.

7.6 Summary

Overall, an ensemble or MIP approach to project ocean capacity has its strengths in being

able to partition uncertainty according to choice of the Earth system model, fisheries/

ecosystem model, climate scenario, and socioeconomic scenario. We can also find out how

dependent our projections are on different components of model projections, such as choice

of Earth system model, ecosystem model, climate scenario, and fishing scenario. By

comparing projections of models of varying philosophy and structure, we can learn more

about the models themselves, where their sensitivities lie, what mechanisms and processes

lead to variation in projections, how to improve them, and where to focus efforts to build

confidence in ocean capacity projections moving forward. This process has been developed

with the goals of not only improving modeling of ocean ecosystems and fisheries, but to

provide information for developing management and adaptation strategies and policies to

climate change.
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